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On the statistics of generalized Gaussian structures: 
collapse and random external fields 
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Universitat Freiburg. "heoretische Polymerphysik. Rheinsv. 12, D-79104 Freiburg, Germany 

Received 11 May 1995 

Abstract. We consider the statistics of generalized Gaussian structures (ccs) exposed to a 
random external field. A GGS comprises N monomers CoMected to each other by h o n i c  
potentials. When the spectral dimension d, of a GGS exceeds the value of two its radius of 
gyration R becomes independent of its mass N .  The cIoss-over into this collapse can be 
mated continuously by cross-linking m precursor chains of length n in the stretched state to 
an object which we call a polymer bundle. We demonstrate that an external field f applied to 
each monomer can 'unfold' such a collapsed state. In the case where every monomer has an 
individual, randomly distributed, charge the critical spectral dimension for the collapse is mised 
IO four. R scales like fN" with o = (4 - d,)/(Zd,) ford, < 4. 

1. Introduction 

The successful theoretical investigation of many polymer systems such as solutions and 
melts composed of linear chains is based upon a very simplified model: that of a Gaussian 
chain. To explain the universal features of polymers on length scales much larger than a 
few monomers one assumes that the polymer chain is a sequence of N Brownian beads 
connected by harmonic entropic forces [l]. This reflects, in a reasonable way, the static and 
dynamical properties due to the chain connectivity, see for instance [Z] for a series of cases 
in which the model describes the physical situation properly. If nothing else is assumed the 
model is called an ideal chain. One may even implement additional features into the model, 
such as interactions between the monomers (e.g. the excluded volume effect due to van der 
Waals forces, electrostatic interactions, etc) by the use of comesponding statistical weights. 
However, what distinguishes polymers from simple fluids is just the chain connectivity, so 
that the understanding and mathematical formulation of the physics of Gaussian chains is 
the first important step in theoretical polymer physics. 

It is tempting to extend the Gaussian chain idea to nonlinear polymers such as gels, 
membranes and polymer networks or, more generally, to any connected smcture built from 
monomers. Provided there are N monomers connected to each other, the connectivity 
potential reads in d spatial dimensions: 

where the first sum extends over all pairs (i, j )  which form the set of bonds B between the N 
monomers. In equation (1) ri denotes the position of the i th  monomer and kT is, as usual, 
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the product of Boltzmann's constant and temperature. In equation (1) 1 is the mean bond- 
length in each Euclidean direction, see 121 for details. One notes, moreover, that the potential 
in (1) is entropic, it is nor of energetic-nature, such as a chemical bond between monomers. 
Without further terms the different Euclidean coordinates decouple in (I) and H, is a sum 
of d independent terms. Hence, we can restrict ourselves to only one spatial dimension. 
Extending the usage for linear chains we call the matrix M in (1) the generalized Rouse 
matrix (GRM) [3,41. Note that similar matrices which describe connectivity are known from 
other areas of physics. Examples are the Hiickel matrix used for determining energy levels 
in PPP (MO) semiempirical quantum calculations [5 ]  and the Kirchhoff matrix in the study 
of resistor networks. In polymer physics the GRM was already discussed by Graessley [6] 
as well as by Eichinger et al [7]. Knowing the connectivity of a given set of monomers 
the construction of the GRM proceeds as follows. Starting with all matrix elements set to 
zero a bond between monomers i and k is accounted for by incrementing the diagonal 
elements Mi! and Mkk by + I  and Mix and Mki by -1. A linear connectivity yields the 
tridiagonal Rouse matrix which is, by itself, a discretization of the one-dimensional Laplace 
operator. From the construction of the matrix M it follows directly that the normalized 
vector mo = ( 1 / f l ,  1 f f l ,  . . .) is an eigenvector corresponding to the zero eigenvalue 
WO = 0; this may be easily seen from the fact that the sum over all row elements of M is 
equal to zero, i.e. det(M) = 0. Moreover, the sum over all vector components of mo obeys: 
Ck=O,N-I mt = a; this is also the largest value the sum Ck=O,N-I mk can take under the 
constraint that m is normalized. This relation will be useful later. 

A basic structural feature of a polymer is its radius of gyration R.  Now R2 is given 
by the sum of the squared distances of all monomers from the centre of mass. In one 
dimension: 
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For Gaussian linear chains one has the well known scaling relation { R 2 )  - N between 
the average of R2 over all realizations and the degree of polymerization N ('mass' of the 
polymer). 

Since in the following we perform averages over powers of ri, it is convenient to 
introduce here the partition function (i.e. the generating function). For a GGS comprising N 
monomers subject to external forces ( Fk] the partition function is 

(3) 

In equation (3) the integrations run over the volume V and we set f* = lFk/kT. 
Now we switch from the Irk] to the normal coordinates ( u u } ;  they are given by 

the unitary transformation [2]: rk = 1 E, m:u,, where m i  is the ath component of the 
normalized kth eigenvector of M ,  corresponding to the eigenvalue ok. In terms of normal 
coordinates the radius of gyration is 

Note that to R2 only those normal coordinates contribute which correspond to the non-zero 
eigenvalues (see the appendix for details). In terms of normal coordinates the partition 
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function takes the form 

with f" = Ex mEfx. We assume that the volume V is very large. The integrations over all 
non-zero modes U, with a > 0 can be extended to infinity. Only the uo integration depends 
on the volume. Note that u o l f l  is the centre-of-mass coordinate of the structure. Because 
of the structure of Z(f), averages of U. can be expressed through the derivatives of Z ( f ) .  
If g(u.) is some (analytic) function of U @ ,  its thermodynamic average (g) can be evaluated 
using 

Now R2 does not depend on uo. and thus in its evaluation from Z (  f )  we may disregard the 
term depending on f (the last integral on the right-hand side of (5)), since according to the 
above equation this term drops out. (Physically, this means that the translational degree of 
freedom does not affect the internal properties of the GGS). With equations (5) and (6) the 
thermodynamic average of R2 as given by (4) takes for arbitrary external forces the form 

We are interested in the scaling behaviour of (R') as a function of N and f .  Here we 
restrict ourselves to the discussion of the first and third term on the right-hand side of (7), 
by noticing that, these terms are larger than the absolute values of the second and fourth 
term, respectively, as can be shown by using the inequality I Ck mKI < a, which holds 
for normalized vectors. Hence we expect under usual conditions the corrections due to the 
latter terms to be (at most) of the order of the terms which we now analyse. For instance, 
in the extreme case of a linear chain the correction terms change the prefactors by f for 
the first term and by for the third term. Notice that the first and the third term of the 
right-hand side of (7) are determined solely by the eigenvalue spectrum. 

2. The force-free case: collapse transition 

Firstly, we consider the case fk = 0. According to (7) we have 

where the last equation makes explicit use of the spectral density n(o). In equation (8) o,in 
is the smallest non-vanishing eigenvalue. Physically it is connected with the extension and 
topology of the object and is given by its universal (scaling) properties (see equation (10) 
below). On the other hand omU is the largest.value o can take and is due to local (non- 
universal) properties of the object. As was shown in [3], om,, is determined by the entropic 
spring constant and by the maximal number of nearest neighbours of a site (monomer). 
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General networks are characterized by their connectivity, i.e. by a topological feature. 
For them the GRM is related (being a generalized Laplace operator) to the spectral dimension 
d3 of the GGs, see for instancc [8]. As is well known, ds is directly reflected in the spectral 
density n(m). For isotropic and locally homogeneous fractal objects (these include regular 
lattices as special cases) one has [SI 

(9 
For d, c 2 the minimal eigenvalue m,in is inversely proportional to the time t it takes a 
random walker to explore the whole fractal of size (‘mass’) N .  With N - td3” it follows: 

Inserting equation (10) into (8) we obtain for d, c 2 (R’) - mzn-2)’2, since the lower 
bound dominates the situation. Hence, ford, < 2, using (IO) it follows: 

n(m) &/2-1 - - W ( J r 2 ) / 2  

mmin - - N-2/dx , (10) 

( R 2 )  - N ? .  (1 1) 
On the other hand ford, > 2, (R’) does not depend on mmjn. Thus it is no longer controlled 
by the mass N of the object. This, of course, holds under the Gaussian assumption of lack 
of any self-volume. Further, below we will show that random external fields can change 
the collapse situation. 

Firstly, however, to further highlight the role of the dimension we focus on m parallel 
polymer chains of length n, a polymer bundle containing N = mn monomers. Polymers 
may arrange themselves in this way under large shear strain. We now let the nearest- 
neighbour monomers of different chains be connected to each other; the resulting cross- 
linking topology is then orthogonal to the already-existing chain connectivity: the system 
may be visualized as being a tennis net. For instance, for m = 2 the construction leads 
to a ‘rope ladder’, where the rungs are represented by cross-links (DNA-molecules have a 
similar, very regular structure). We consider first a two-dimensional system, i.e. the bundle 
is taken from m m-parallel chains. The connectivity term in (1) takes the form: 

Here the Greek indices in the products run over them precursor chains while the capital latin 
indices run over then monomes within each chain. The matrix Mu* differs from M K I  only 
in dimension. Introducing the superindex i(K, U) = (CY - l )n+ K (which corresponds to the 
general index we used so far) we can write the eigenvalues as mj(K,  CY) = O K ,  = m~ +U,; 

the last result is obtained by two successive diagonalization procedures of M. The 
eigenvalues WK and W, correspond to the matrices MIK and Mu*, respectively. In the 
force free case the mean square radius of gyration now obeys 

In the special case of a ‘rope ladder’, m = 2 we get U,,O = 0 and ma=, = 2. Hence 

Since the eigenvdues are always positive the effect of the second term in the brackets on 
( R 2 )  is equal to or less than the value and may be suppressed. The first term is exactly the 
expression for the single chain of length n, except for an additional prefactor of 1, which 
emerges from the fact that the number of modes has doubled. Hence, coupling two ideal 
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Gaussian chains through rungs reduces their mean squared radius of gyration by a factor of 
two. Another point of view is to consider the two-stranded object as a renormalized simple 
chain having an effective, doubleentropic spring constant. For m strands (m < n) one 
finds in the same fashion, approximately, 

When m approaches n, in d = 2 a more accurate analysis shows that the smallest eigenvalue 
of M" becomes of order n-' and that the corresponding terms in (13) can no longer be 
neglected. For m = n the two-dimensional object can be viewed as being isotropic so 
that (11) holds. For ds + 2 equation (1 1) leads to a logarithmic N-dependence of (R'). 

Let us now consider m parallel chains in 3D, connected via rungs to each other. The 
approach is the same as above, except that now each of the two cross-linking matrices has 
the dimension fi. For the case m = n the main difference to the 2D bundle is that the 
eigenvalues of the cross-link matrices are still much larger than the smallest eigenvalue of 
the s&d matrix (actually the smallest value is now of order m). Hence, the argument 
which has led us to (IS) remains valid; the object collapses for m = n. Note, that since the 
thickness of the bundle is of order m'I2 the object is stillhighly anisotropic when it starts 
its collapse. 

3. The role of random external forces 

We now tum to the question to determine what happens if extemal forces are present. We 
confine ourselves to the case when each monomer k carries a random charge and hence, in an 
external field, is subject to a force Fk = kTj$/ l .  We assume that we have both positive and 
negative 'charges' on the GGS and we take them to be independently distributed random 
variables, so that (j$) = 0 and (fxfi) = f2Q hold. The ensemble average over the 
quenched (frozen) disorder is denoted by additional brackets (. . .). We do not consider, 
however, possible intra-molecular interactions between our charges. 

Note that due to the unitarity of the transformation (m;) one also has for the f" [IO]: 
(f" f b )  = f 2 P b .  Applying the strgctural average to (R') in (7) we get up to constants: 

Making again use of the spectral density it follows: 

{(R')) - N? + f2N?,  

Notice that the second term on the right-hand side of (17) depends on N up to d, = 4. 
Physically this means that due to the presence of positively and negatively charged 
monomers the extemal field unfolds the collapsed structure. 

When the displacements become large the model of Gaussian entropic forces between 
the monomers will fail and so will our approach. The structure then becomes oversketched. 
However, we can estimate the range of validity of the model. Overstretching happens when 
(R) - 

(18) 
Ford, > 2 the force may be quite strong without contradicting the Gaussian assumption. 

In summary, we found that generalized Gaussian structures (GGS) are internally. stable 
as long as their spectral dimension lies below d, = 2. By considering anisotropic bundles 

(the structure is no longer folded). Hence we are led to the condition 
2 -  f N dr << N% + f 2 < < N % .  
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of m cross-linked precursor chains each of length n we can follow the cross-over transition. 
The bundle collapses when m approaches n. In the case of d, = 3 we find that already a 
highly anisotropic bundle collapses. Random forces which act on each monomer separately 
may unfold the GGS as long as d, c 4. If the spectral dimension is larger than two, the 
applied forces may be quite large without being in conflict with the Gaussian assumption. 
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Appendix. Radius of gyration in normal coordinates 

The set of eigenvectors (mi]  of the GRM simultaneously defines the unitary transformation 
which diagonalizes the CRM. The normal coordinates are defined by applying this unitary 
transformation to the vector [ r k }  (k = 0, 1, . . . , N - 1). 

We consider only the case of connected objects so that only one eigenvalue WO vanishes. 
According to the special property of the GRM, namely that c f ~ ‘  Mk[ = o it follows that 
ml = ( N - ’ / 2 ,  N-’ / ’ ,  . . . , N - 1 / 2 ]  is a normalized eigenvector to WO. This is all that is 
required to establish (4). Starting from (2) one gets 
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As a second step we separate all components with a = 0 orb  = 0 form the sum. Note that 
uo = ( I / f i )  cfs’ rk holds, so that 

However, the last term vanishes again because of the zero eigenvector property: 

Hence the squared radius of gyration R2 is independent of UO, as it should be, and is given 
by (4). 
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